Core Mathematics C4 Advanced Level

Paper A
Time: 1 hour 30 minutes

Instructions and Information
Candidates may use any calculator EXCEPT those with the facility for symbolic algebra, differentiation and/or integration.
Full marks may be obtained for answers to ALL questions.
The booklet 'Mathematical Formulae and Statistical Tables', available from Edexcel, may be used.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working may gain no credit.

Published by Elmwood Press
80 Attimore Road
Welwyn Garden City
Herts. AL8 6LP
Tel. 01707333232
These sheets may be copied for use solely by the purchaser's institute.
© Elmwood Press

1. $\mathrm{f}(x)=\frac{3 x}{(x-1)(x+2)}$.
(a) Express $\mathrm{f}(x)$ in partial fractions.
(b) Evaluate $\int_{2}^{3} \mathrm{f}(x) \mathrm{d} x$.
2. A curve has parametric equations

$$
x=1-t^{3}, y=1+t^{2} .
$$

(a) Find the value of the parameter t at the point $(2,2)$.
(b) Find the equation of the tangent to the curve at $(2,2)$.
3.

Figure 1

Figure 1 shows the curve with equation

$$
y=e^{x}-3 x
$$

The minimum point on the curve is M and the line $M N$ is parallel to the y-axis.
(a) Find the x-coordinate of M.
(b) Show that the area of the shaded region can be written as

$$
a-b(\ln 3)^{2},
$$

where the constants a and b are to be determined.
4. A curve has equation

$$
4 x^{2}+3 y^{2}-2 x y=32
$$

(a) Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y, simplifying your answer.
(b) Find the gradient of the curve at the point $(2,4)$ and hence find the equation of a tangent to the curve at that point.
5. In the series expansion of $(1+k x)^{n}$, the coefficients of x and x^{2} are -6 and 27 respectively. Find
(a) the value of k and the value of n,
(b) the coefficient of x^{3} in the expansion,
(c) the set of values of x for which the expansion is valid.
6. (a) Solve the differential equation

$$
x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=y^{2}\left(4 x^{5}-1\right)
$$

given that $y=\frac{1}{2}$ when $x=1$.
(b) Use the substitution $t=1+x^{2}$ to show that

$$
\begin{equation*}
\int_{0}^{2} \frac{x^{3}}{\left(1+x^{2}\right)^{\frac{1}{2}}} \mathrm{~d} x=\frac{2}{3}(1+\sqrt{5}) \tag{7}
\end{equation*}
$$

7.

Figure 2

Figure 2 shows the graph of $y=2 x-x \ln x$. The graph crosses the x-axis at the point P and has a turning point at Q.
(a) Find the coordinates of Q.

Verify that $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}<0$ at this point.
(b) Show that the coordinates of P are $\left(e^{2}, 0\right)$.
(c) (i) Show that $\int_{1}^{\mathrm{e}^{2}} x \ln x \mathrm{~d} x=\frac{3 e^{4}+1}{4}$.
(ii) Find the area of the shaded region bounded by the curve, the x-axis and the line $x=1$.
8. The position vectors of A, B, C and D with respect to the origin are:

$$
\left.\begin{array}{c}
A \\
\left(\begin{array}{l}
6 \\
2 \\
0
\end{array}\right)
\end{array} \begin{array}{c}
B \\
\left(\begin{array}{l}
2 \\
4 \\
1
\end{array}\right)
\end{array} \begin{array}{c}
C \\
9 \\
3 \\
0
\end{array}\right) \quad \begin{gathered}
D \\
\left(\begin{array}{l}
4 \\
8 \\
2
\end{array}\right)
\end{gathered}
$$

(a) The line through B and C is denoted by l_{1} and the line through A and D is denoted by l_{2}. Show that l_{1} has equation

$$
\mathbf{r}=\left(\begin{array}{l}
2 \tag{2}\\
4 \\
1
\end{array}\right)+\lambda\left(\begin{array}{r}
7 \\
-1 \\
-1
\end{array}\right)
$$

(b) Find an equation for l_{2}.
(c) Find the position vector of the point where l_{1} and l_{2} intersect.
(d) Calculate the acute angle between l_{1} and l_{2}, correct to one decimal place.

